
Snap-To-It: A User-Inspired Platform for
Opportunistic Device Interactions

Adrian A. de Freitas1, Michael Nebeling1, Xiang ‘Anthony’ Chen1, Junrui Yang2,
Akshaye Shreenithi Kirupa Karthikeyan Ranithangam3, Anind K. Dey1

1 Human-Computer Interaction Institute, Carnegie Mellon University, Pittsburgh, PA, USA
2 Peking University, Beijing, China 3 Coimbatore Institute of Technology, Tamil Nadu, India

(adefreit, mnebelin, xiangche, anind)@cs.cmu.edu, (jackieyang51, akshaya.kar)@gmail.com

ABSTRACT
The ability to quickly interact with any nearby appliance from
a mobile device would allow people to perform a wide range
of one-time tasks (e.g., printing a document in an unfamiliar
office location). However, users currently lack this capability,
and must instead manually configure their devices for each
appliance they want to use. To address this problem, we cre-
ated Snap-To-It, a system that allows users to opportunistically
interact with any appliance simply by taking a picture of it.
Snap-To-It shares the image of the appliance a user wants
to interact with over a local area network. Appliances then
analyze this image (along with the user’s location and device
orientation) to see if they are being “selected,” and deliver the
corresponding control interface to the user’s mobile device.
Snap-To-It’s design was informed by two technology probes
that explored how users would like to select and interact with
appliances using their mobile phone. These studies highlighted
the need to be able to select hardware and software via a cam-
era, and identified several novel use cases not supported by
existing systems (e.g., interacting with disconnected objects,
transferring settings between appliances). In this paper, we
show how Snap-To-It’s design is informed by our probes and
how developers can utilize our system. We then show that
Snap-To-It can identify appliances with over 95.3% accuracy,
and demonstrate through a two-month deployment that our
approach is robust to gradual changes to the environment.

ACM Classification Keywords
H.5.2 Information Interfaces and Presentation (e.g. HCI): User
Interfaces: Input Devices and Strategies, Interaction Styles

Author Keywords
Internet of things, mobile interaction

INTRODUCTION
The rapid proliferation of “smart” appliances (e.g., printers,
speakers) has created new opportunities for users to interact

©2016 Association for Computing Machinery. ACM acknowledges that this contribu-
tion was authored or co-authored by an employee, contractor or affiliate of the United
States government. As such, the Government retains a nonexclusive, royalty-free
right to publish or reproduce this article, or to allow others to do so, for Government
purposes only.

CHI’16, May 07–12, 2016, San Jose, CA, USA
©2016 ACM. ISBN 978-1-4503-3362-7/16/05...$15.00
DOI: http://dx.doi.org/10.1145/2858036.2858177

Figure 1. A user takes a photo of the appliance they want to control (left).
Our system shares this image (along with the user’s location and device
orientation) with nearby appliances. The user’s device connects to the
appliance that best matches the image, and receives a custom UI (right).

and engage with technology in meaningful ways. Taking ad-
vantage of this connectivity, however, is a well-known problem
[7, 19, 23, 25, 31]. For example, if users want to use a net-
worked printer, they have to know its IP address and install the
correct drivers. Similarly, if a user wants to play music on a
Bluetooth speaker, they must set the appliance to be discover-
able, and then find and pair with it. While this level of effort is
acceptable for appliances used frequently, it makes one-time
or spontaneous use impractical. This discourages users from
interacting with new or unfamiliar appliances, and can even
force them to seek alternative solutions (e.g., asking a friend
or stranger to print a document on their behalf).

Our goal is to empower users with the ability to quickly and
easily connect and interact with ubiquitously distributed appli-
ances in any environment. To achieve this, we have developed
Snap-To-It, a software system that transforms a mobile phone
into a universal interaction tool. Inspired by how people al-
ready use their smartphones, Snap-To-It lets users select a
nearby appliance by "snapping" a photo of it. The Snap-To-It
app then transmits this image (along with the user’s location
and device orientation) across a local area network so that
appliances and/or software proxies can analyze it. If a photo
matches an appliance, the app connects to it and renders a
custom interface (Figure 1). Otherwise, the user receives a list
of the most likely candidates and is asked to select from them.

Prior research has explored several solutions for users to con-
trol appliances from their mobile device [8, 27, 34, 30, 35];
Snap-to-It expands on this work in three important ways.

First, our work broadens our understanding of the types of
opportunistic interactions users would like to perform using a
mobile device. Prior to developing Snap-To-It, we conducted

two probes to learn 1) how users would like to select an appli-
ance in an unfamiliar environment, and 2) how they would like
to interact with that appliance using their mobile phone. These
probes revealed that participants preferred selecting appliances
by taking a photograph (as opposed to scanning QR codes or
selecting them from a list), and identified six categories of
general use cases, respectively. Snap-To-It’s design is directly
informed by these findings, providing a research platform that
not only shows what types of interactions are possible using a
mobile device, but that are actually desired by end users.

Secondly, Snap-To-It provides a truly opportunistic way of in-
teracting with a wide range of appliances. Rather than require
the user to download a list of nearby appliances [19] or connect
to a well-known server [10], our system uses multicasting to
identify an appliance based on its photo. This makes it particu-
larly useful when users are visiting a location for the first time,
and need to use an appliance once or spontaneously. Addition-
ally, while prior work has shown that mobile devices can be
used to select and interact with hardware [29, 33] and software
[11], they have focused on one or the other. In contrast, Snap-
To-It compares user-taken photographs against stock images
and real-time screenshots. This lets it support both types of
appliances using a single interaction technique. Finally, since
Snap-To-It works with any photograph, our system can even
be used to make non-computational objects (e.g., signs, maps)
selectable. This increases the range of appliances, applications,
and information that users can interact with without requiring
each one to have an embedded computer.

Third, Snap-To-It provides a developer-friendly way to al-
low appliances to be selectable via camera. Our system’s
middleware automatically processes incoming photos, estab-
lishes connections with user devices, and delivers arbitrary
HTML/JavaScript-based user interfaces. This allows develop-
ers to incorporate Snap-To-It’s functionality into appliances
without having to implement their own photo recognition. Ad-
ditionally, our middleware can act as a software wrapper for
existing appliances and applications. This greatly expands the
range of appliances that can utilize our system without forcing
users or site administrators to purchase additional hardware.

In the following section, we describe our probes, and show
how user responses have influenced Snap-To-It’s design. Af-
terwards, we describe Snap-To-It’s architecture, and present
four prototypes that highlight its capabilities. Through three
studies, we show that Snap-To-It is sufficiently accurate to
be deployed in real-world environments. Finally, we address
issues such as usability, responsiveness, and hardware require-
ments, and close with a discussion of related and future work.

TECHNOLOGY PROBES AND DERIVED REQUIREMENTS
With Snap-To-It, we aim to let users quickly select and interact
with any object in their physical environment. Yet while prior
work has shown that this two-step interaction model supports
many use cases, they focus on the challenges associated with
connecting to devices and receiving and/or rendering custom
interfaces [19, 27]. Consequently, we lack general knowledge
of 1) how users would like to select appliances using their
mobile devices, and 2) the specific types of interactions they

Figure 2. Appliances used in our first probe.

would like to perform, both of which are crucial for building a
usable and effective system.

To fill these gaps, we conducted two technology probes that
examine the process of selecting and using appliances in detail.
In this section, we describe both probes and show how their
findings have informed Snap-To-It’s design.

Probe 1: Selecting an Appliance from the Environment
Our first probe was targeted towards learning how users would
like to select an appliance using their mobile device. To inves-
tigate this, we asked 10 participants (6 male, 4 female; 22-42
years old; mix of novices and experts with mobile phones
and QR codes) to try out a variety of techniques and provide
feedback. Prior to the study, we gave participants a list of
7 techniques that could be implemented on existing smart-
phones: taking a photograph, scanning a QR code (on and off
the device), near-field communication, “bumping” the phone
against the appliance, text search, and selecting the appliance
from a list. We then had participants rank order each technique
for a variety of appliances (Figure 2), and evaluated the three
techniques that were both rated the highest and compatible
with the widest range of appliances: taking a picture, scanning
a QR code, and selecting from a list.

The probe was conducted in our institution’s common area.
We selected a mix of hardware/software (Figure 2) that vis-
itors might want to interact with using their phones. Prior
to the study, we placed QR codes on each appliance and/or
application using best practices for the size and positioning es-
tablished in [5], and created a list of every appliance within 30
feet of the room (i.e., Bluetooth range). We then gave partici-
pants an app that lets them take a photo, scan a QR code (using
a common QR code reader app [4]), and select an appliance
from an alphabetized list. Participants spent 30 minutes trying
each technique in random order from both touching distance
and 5-10 feet away, and were compensated with $15 USD.

Feedback on the list-based technique was overwhelmingly
negative. Despite being conceptually simple, participants had
difficulty identifying a specific appliance from a list of names.
While this problem might be overcome by choosing names
other than the ones assigned by our network administrators
(e.g., “Zircon”, “Pewter”), prior research suggests that no
naming convention works well with every user [12]. Even
though the list only had 11 items, participants reported that
they were “scrolling and scrolling and scrolling” (P1). This
led them to unanimously rate the list technique as the worst.

Feedback on the QR code technique was also negative. While
participants could see the codes on each appliance, eight of
them had trouble getting the phone to successfully scan one or
more of them. The digital projector (Figure 2b) was especially
problematic since it was located above a conference table; this

forced users to scan its code from an angle. While placing
multiple codes on each appliance (e.g., one on each side) might
help, participants also noted that they disliked having QR
codes appear on a screen, especially when multiple codes are
needed to differentiate between different applications (Figure
2c). Consequently, while participants felt that QR codes were
better than lists, only one rated it as the best technique.

In contrast to the list and QR code methods, feedback on the
camera technique was almost universally positive. Participants
called the technique “fun” (P3, P4, P7), and noted that it was
easy to understand: “I can hand it to my 4-year old, and
he’ll understand” (P1). Others noted that the time to take a
photograph felt shorter than the time needed to scan the QR
code, as they did not have to continually hold their phones
up to the code for it to be recognized. In fairness, several
participants did state that the difference between QR codes and
the camera was negligible when the appliance being selected
is physically close. However, for software applications and
objects farther away, participants agreed that the photo-based
selection method offered a better overall experience.

Collectively, these findings illustrate the value of photo-based
selection. While our participants were eventually able to inter-
act with every appliance using all three techniques, 9 out of
10 stated that they preferred selecting appliances by taking a
photo. This motivated us to develop a system that could make
camera-based selection a reality.

Probe 2: Types of Interactions
For our second probe, we wanted to know how users would
like to interact with appliances once they have been selected.
To investigate this, we asked 28 participants (14 male, 14
female; 19-60 years old; mix of novice and experts) to create a
"wish list" of interactions that they would like to perform. For
this probe, we developed an Android app that let users take
photos of appliances and annotate how they would use them.
We then asked them to use the app for a week as they went
about their normal routine, and compensated them with $20.

Through this process, we collected a total of 195 photographs.
Each photo was categorized according to 1) the interaction be-
ing performed, and 2) the technologies needed to support them.
This information was then directly used to identify general
use cases and derive critical technical requirements. Although
the number of photos submitted by participants varied, our
analysis found that each identified roughly the same number
of general use cases (avg=2.1, SD=1.1), making sure that the
findings were not overly influenced by any one participant.

Use Case Categories
Participants had a wide range of ideas as to how they wanted
to interact with appliances using their mobile phone. In all,
we identified six general use case categories (Figure 3).

Nineteen participants (68%) wanted to use their mobile phones
to quickly interact with new or unfamiliar appliances (Figure
3, Column 1). The majority took photographs of office appli-
ances such as printers, projectors, and multimedia controls.
Others took photos of specialized equipment such as laser
cutters and 3D printers. In each case, users wanted to use the
appliance without installing software/drivers.

Another popular use case was to control appliances from afar
(Column 2). Twenty participants (71%) took pictures of house-
hold/office appliances, vehicles and industrial equipment, and
stated that they wanted to be able to control these devices from
anywhere. In some cases, it was purely for added convenience
(e.g., “[I want to] turn off the lights when I’m in bed”). Others
viewed their phone as a more hygienic way to interact with
public objects (e.g., lights, toilet handles) without having to
physically touch them. Finally, several participants noted that
being able to activate controls from a distance would be partic-
ularly helpful to disabled individuals. We found this to be an
unexpected, but interesting use case that we wanted to support.

While we anticipated that participants would want to use their
smartphones as a remote control, participants also identified
several other ways to interact with appliances. Eight partic-
ipants (29%) wanted to use their mobile device as a way to
upload and download content (Column 3). Several users took
pictures of public displays and televisions, and stated that
they wanted to be able to send or receive content (e.g., push
a PowerPoint presentation, pull a closed-caption feed). Inter-
estingly, the idea of pushing/pulling content was not limited
to computer devices. Several participants took photos of dis-
connected objects such as campus maps and public museum
displays, and stated that they wanted to extract the information
represented by the object using their phone (e.g., converting a
picture of a map into a digital version). In these cases, partici-
pants viewed these objects as “physical hyperlinks”, and were
interested in being able to use their mobile phone as a way to
access an object’s digital representation.

Seven participants (25%) wanted to use their phone to perform
secure transactions (Column 4). Several of them took pictures
of locked doors and computers, and noted how it would save
them time and effort if they could authenticate to these devices
while approaching them. Others took photographs of payment
systems (e.g., vending machines), and noted that it would be
convenient if they could make purchases electronically.

A fifth use case identified by four participants (14%) was to
learn more about a particular appliance (Column 5). One
participant photographed a light switch, and wrote: “I am not
so sure what these buttons control.” Others took pictures of
fire alarms, defibrillators, and household appliances, and asked
for 1) what the appliance does, and 2) how to use it.

Finally, two participants (7%) wanted to use camera-based
selection to easily transfer settings and preferences between
appliances (Column 6). One participant took a photo of a
treadmill, and said that he wanted to easily carry over his
exercise preferences (e.g., speed, incline) to another machine
during his next workout session. The other took a photograph
of a public television, and stated that he wanted to quickly find
and tune to his favorite channels without having to search for
them. In both cases, users wanted their phone to remember
their past interactions. This would allow them to seamlessly
transfer these preferences to new appliances.

Collectively, these responses highlight the need for a system
like Snap-To-It. While only 18% of our participants stated that
they use more than three devices daily, our probe reveals that

Figure 3. General use cases for Snap-To-It, as derived from user responses in our second technology probe.

1) all of them wanted to interact with more devices than they
currently do, and 2) that this desire extends beyond simple
remote controls. This emphasizes the relevance of our work,
and the need for a more versatile way of interacting with
appliances than is currently available.

Functional Requirements
Our probes show that users seek a simple but versatile way of
interacting with a wide range of objects/appliances. From their
responses, we have identified five functional requirements:

R1: Support Photo-Based Selection. Our first probe shows
that users prefer selecting appliances via photos. Consequently,
while other methods (e.g., QR codes) may be necessary at
times, camera-based selection should be used when possible.

R2: Interact with Software and Hardware. Current sys-
tems typically focus on interacting with hardware [19, 2] or
software [11]. Our second probe, however, shows that users
frequently interact with both types of appliances (Figure 3).
For this reason, tools like Snap-To-It need to support both
hardware and software interactions through a single interface.

R3: Interact with Appliances from Afar. Our second probe
shows that users want to interact with appliances that are out
of sight (Figure 3, Column 2). This points to the need to
remember previously used appliances (i.e., a “favorites list”)
so that remote operation is possible.

R4: Render Complex Interfaces. Many of the use cases
identified in Figure 3 call for complex user interfaces (e.g.,
interactive maps, real-time closed-captioning feeds). These
interfaces are more dynamic than the button/slider interfaces
supported by existing remote control systems, and illustrate
the need to be able to render any arbitrary UI “on the fly.”

R5: Support Expandability. The final insight gained from
our probes is that users use new technologies in unexpected
ways. While we know that there are several obvious use cases
that our system needs to support (e.g., sending commands
to remote appliances), our participants have also identified
a number of use cases that are important to them, such as
the ability to perform remote transactions and save/transfer
settings. These findings highlight the real world challenges of
creating a universal interaction tool, and that systems such as
Snap-To-It need to be flexible enough to accommodate these
use cases as they are discovered.

Figure 4. High level system architecture. Solid boxed components are
provided by Snap-To-It, dotted boxes by developers/administrators.

In the following section, we show how Snap-To-It’s design
is directly influenced by our probes. Our system satisfies all
five requirements described above, and provides a middleware
that makes it easy to add our system’s functionality to new or
existing appliances. This allows it to support all six use case
categories while still leaving room for future expansion.

SYSTEM DESIGN
Snap-To-It consists of two components (Figure 4): 1) a mobile
app, and 2) a series of remote service providers (RSP), each
of which controls one or more appliances and resides either
on the appliance itself or a designated proxy (i.e., a server).
When users take a photo, the app sends a multicast datagram
containing a URL to the photo, as well as the phone’s location
and device orientation. RSPs on the same subnet can then
use this information to determine if the user is looking at
them, and respond with their IP address and port. In our
system, RSPs analyze photos, deliver interfaces, and transmit
remote commands to the appliance(s) they control. The app, in
turn, acts as a thin client, and can interact with any appliance
without having to know about it or its capabilities in advance.

This section describes Snap-To-It’s important technical details.
First, we show how our system recognizes appliances. After-
wards, we show how it renders interfaces, shares preferences,
authenticates users, and supports extensibility.

Selecting an Appliance via the Mobile App
Snap-To-It offers two ways to select an appliance. The primary
way is by using the mobile device’s camera (R1). Each time

Figure 5. Snap-To-It’s appliance recognition process.

a user takes a photo of an appliance, our app automatically
uploads a 640 × 480 JPEG version of it to a cloud server
(which simply hosts the photo for RSPs to access), and records
the phone’s location and orientation (azimuth, pitch, roll). It
then transmits a request message containing the photo URL,
location, and device orientation, and waits for a response. If
an RSP reports that it matches a photo with a high degree of
confidence, our app automatically connects to it. If no high
confidence match is found (or the appliance is obstructed), the
app provides users with the five highest matching appliances
based on their reported context, and lets them choose which
one they want to use. Our app always lets users return to the
list of top matches for the most recently taken photo. This
lets them gracefully recover in the event they (or the system)
select the wrong appliance.

In support of R3, our mobile app also allows users to select
appliances over long distances. Our system maintains a history
of previously connected appliances, and lets users explicitly
add appliances to a favorites list. The user can then use either
list to reconnect to an appliance without having to be nearby.

Recognizing an Appliance
Snap-To-It matches user requests to specific appliances in
three stages (Figure 5). In the first stage, each RSP extracts
the latitude/longitude from the request message and calculates
the distance between itself and the user. The RSP only then
proceeds to the next stage if the user is within a predefined
distance (e.g., 50 meters). Since indoor location tracking is
imprecise, our system only checks to see if the user is in the
general vicinity of the appliance (i.e., the same building). This
lets RSPs disregard requests from users that are clearly out of
visual range, and lets our system work in networks where a
subnet covers a large area (e.g., a college campus).

In the second stage, RSPs check to see if the user’s camera
is pointing towards the appliance they represent. Each RSP
knows what direction a user needs to be facing in order to
take a picture of it (specified a priori or obtained by using
its onboard compass). RSPs can then check to see if the
user’s device is pointing towards it. Similar to before, this test
cannot definitively tell if a user is looking at it. Instead, it only
prevents appliances from comparing photos that are obviously
taken from the wrong direction. This improves accuracy when
appliances look similar, but face different directions.

The third stage examines the user’s photograph. Here, each
of the remaining RSPs under consideration downloads the
user photo and extracts its salient features using the Scale-
Invariant Feature Transform (SIFT) algorithm [22]. These
features are then compared to reference photos (i.e., photos
of the appliance that are either provided in advance, or taken
programmatically), and the results (i.e., the maximum number

of matches) are sent back to the mobile app. We use SIFT
because the features it identifies are resilient against changes
in the orientation of the camera and distance from appliances.
This lets it effectively compare two images, even when they
are taken from slightly different angles and distances.

For the above process to work, each RSP needs to know 1)
what it looks like, 2) where its appliance is located, and 3)
what direction the user needs to face to photograph it. For
appliances with a GPS, compass, and display, this informa-
tion can be automatically obtained by directing the RSP to
periodically poll its sensors and take screenshots of its display,
respectively. Many appliances (e.g., printers), however, lack
this capability. To support them, developers and/or adminis-
trators can collect this information via our mobile app, and
provide the photos (and their associated metadata) to the RSP.
While cumbersome, we have empirically found that this ap-
proach yields good results with as few as 3 reference photos
(one taken from the front, and two from opposite 45 degree
angles). This makes it easy for developers to create RSPs for
a wide range of hardware, software, and non-computational
objects (satisfying R2).

Additionally, our process requires that every reference photo
contain some information about an appliance’s surroundings.
To achieve this, our app provides users with a targeting retic-
ule (i.e., a box), and instructs them to keep the appliance in
the center of the image (Figure 1, left). The resulting photos
contain enough background scenery to give the RSP a sense
of where it is located in relation to the environment, as well as
what appliances are near it. This lets our system differentiate
between similar looking appliances, even when they are physi-
cally near each other (an examination of Snap-To-It’s accuracy
is provided in our validation).

Updating/Maintaining Reference Photos
Snap-To-It’s accuracy largely depends on the quality of its
reference photos. When these photos closely match the appli-
ance’s actual appearance, our system is able to identify appli-
ances with a high degree of confidence. However, reference
photos become stale over time as the environment changes.
Consequently, there needs to be a way for RSPs to update their
reference images with minimal assistance.

Snap-To-It overcomes this problem by utilizing user pho-
tographs. When users connect to an RSP, the photo they
took is compared to the RSP’s reference images. If the photo
was taken at a similar angle to an existing photo (e.g., within
10 degrees azimuth/pitch/roll) and has a low number of SIFT
matches, the RSP replaces the older reference image. Other-
wise, the system adds the photo to its current library (up to a
specified limit). By letting RSPs update their reference images
when the SIFT accuracy drops below a threshold, our system
is able to learn how an environment is changing over time.
This keeps them up to date, while simultaneously allowing
them to recognize appliances from a wider range of angles.

Although this provides RSPs with new photos, it also opens
the possibility of RSPs receiving blurry or inaccurate images
by mistake (e.g., an image of another appliance). To overcome
this, RSPs ask users to judge another user’s photo before

Figure 6. Sample controls for a printer. When users press the “Print
File” button, it invokes our JavaScript API (red/underlined) to select
and upload a file (bottom right).

adding it to its library. By leveraging user responses, RSPs
can “weed out” low quality photos from its library. Moreover,
since judging is only needed when a new photo is added, the
impact on the end user experience is kept to a minimum.

Defining User Interfaces
From our second technology probe, we know that there are a
handful of common operations that users need to perform in
order to effectively control an appliance, such as the ability to
transmit remote commands. As a result, Snap-To-It provides
a JavaScript API that supports these core functions. When
developers specify their interface, they can insert calls to our
API at key events (e.g., when a button is pressed). These calls
then direct the app to perform a desired action (Figure 6).

This approach lets Snap-To-It perform operations that are nor-
mally inaccessible (or difficult to perform) from a mobile web
browser. Our system allows developers to customize these
operations (e.g., specify what command is transmitted), and
“push” new UIs without requiring the user to refresh their
display. This allows them to create responsive, arbitrarily com-
plex UIs (supporting R4), and makes our system extensible to
a wide range of appliances and use cases.

Sharing Preferences
RSPs can also store preferences (e.g., favorite TV channels,
exercise settings) on the user’s device, similar to the way that
websites store cookies on a client device. When an RSP needs
to save a preference, it calls our API’s setPreference method,
and specifies the name of the preference and its value. These
values are then stored in the mobile app, and are provided to
the RSP in future sessions.

Moreover, preferences can be shared across appliances (sup-
porting R5). Each time an RSP replies to a request, it specifies
the preference(s) it needs. The mobile app then delivers these
preferences (if authorized by the user) to the RSP when it
connects. Since RSPs can ask for any preference, our system
lets appliances configure themselves (e.g., transfer exercise
settings) based on the user’s interactions with similar and/or
complementary appliances. In doing so, we reduce the need
for manual configuration in many situations.

Figure 7. Pseudocode for a remote service provider.

Identifying Users
There are many situations where an RSP needs to customize
the services it offers on a per-user basis. For example, an
RSP for a printer on a college campus might want to provide
students and faculty members with an interface to print in
color, while limiting visitors to black and white.

To support these situations, Snap-To-It allows appliances to
distinguish between individual users. Each time a mobile app
connects to the RSP, it transmits a set of identifying credentials
to the RSP. The RSP can then use these values to determine
what level of service to provide. For now, our credentials
contain the device’s Android ID and a hash of the user’s email
address, as this information is sufficient to identify a particular
user (provided the email address or ID is known beforehand).
In the future, however, a more robust authentication method
(i.e., digital signatures) could be used in its place. This would
provide greater security, while still allowing our system to of-
fer relevant and appropriate services (supporting R5 as well).

Creating a New RSP
Snap-To-It’s middleware makes it easy for both first and third
party developers to create and deploy their own RSPs. To
demonstrate this, Figure 7 provides a sample implementation
of a printer RSP. This code is simplified for brevity, but high-
lights the three steps needed to create an RSP from scratch:

1. Add Reference Photos. In the first step, we tell the RSP
what its appliance looks like. For this example, we only pro-
vide a single image (along with its location, azimuth, pitch,
and roll). However, more photos will obviously improve its
ability to recognize itself in a user-submitted image (at the
cost of increased computation time).

2. Specify the UI. The second step is to specify the user
interface that the mobile app will display. Here, we return the
HTML code that is described in Figure 6. Alternatively, we
can provide the user with an HTTP/S link.

3. Process Commands. The final step is to process incoming
commands from the mobile app. From Figure 6, we see that
the app will automatically transmit a command (e.g., “PRINT”)
to the RSP each time the user uploads a file. To detect this
command, we check for this string in the onRemoteCommand
method. We then use the URL contained within the command
to download and print the file.

We implemented Snap-To-It in Java. It uses the OpenImaj
library [17] to perform image comparisons, and UDP multicast
and TCP sockets to transmit requests and send commands,
respectively. Our system currently works in any environment
with a local area network, but is targeted towards work areas
such as offices. In the future, however, we hope to use ad hoc
networking in order to support a wider range of locations.

VALIDATION
We validate Snap-To-It in two parts. First, we present four
examples that were created using our system. We then evaluate
Snap-To-It’s accuracy, both under controlled conditions and
after a two-month deployment.

Example Applications
In this section, we describe four applications (Figure 8a-d)
that were developed using Snap-To-It. Each application is in-
spired by our general use cases, and demonstrates the range of
interactions (hardware and software) our middleware supports.

Application #1: Game Controller
Our first application uses Snap-To-It to quickly control an
appliance. For this application, we deployed a laptop running
both a commercial game and an RSP. When a user takes a
photo of the screen, Snap-To-It sends a multicast datagram
containing a link to the image, as well as the user’s location and
device orientation. Our RSP then verifies that the user’s phone
was pointed towards the laptop and looking at the screen, and
sends back a response containing the number of visual feature
matches and its IP address. When the user connects to the RSP,
the mobile app receives an HTML interface for a gamepad and
renders it on the screen. As the user presses buttons on the UI,
the interface directs the mobile app to send commands to the
RSP (e.g., “LEFT”). These commands are then translated into
keyboard presses that control the game.

This application demonstrates our system’s ability to select
appliances, render interfaces, and transmit commands without
requiring either the mobile app or the RSP to know of each
other a priori. Additionally, this application also shows how
preferences can be shared through our system. In addition to
the default controller shown in Figure 8a, the application also
lets users choose between multiple controller layouts. This
preference is then stored on the user’s device, and can recreate
their control settings when playing on a different computer.

Note that we did not use a special API to control the game.
Instead, our RSP merely translates the user’s controller com-
mands into keyboard presses to give the user the impression
that they are controlling the game directly. The ability to wrap
Snap-To-It around existing applications is inspired by prior
work in software overloading [14], and we believe that this
is a general technique that can be used to instrument a wide
range of existing hardware and software appliances.

Application #2: Digital Projector
Our second application shows how Snap-To-It can be used to
upload/download content. We created an RSP that is linked to
a conference room’s multimedia control system. When users
take a photo of the room’s digital projector, the RSP provides
them with an interface that lets them upload a presentation.

The RSP then downloads and projects the presentation, and
provides the user with slide deck controls (Figure 8b).

This application also shows how Snap-To-It can support mul-
tiple users at once. Our RSP differentiates between the user
that uploaded the presentation and users that connect after-
wards (i.e., audience members). The RSP can then provide
audience members with a separate interface to 1) see the cur-
rently visible slide, and 2) download a copy of the presentation.
Although simple in concept, this application shows how Snap-
To-It can support multiple user types through a single RSP.
This allows our system to support a wide range of collabo-
rative and cooperative activities—a capability not explicitly
supported in existing remote control systems.

Application #3: Paint App
Our third application uses Snap-To-It to enhance a traditional
software UI. By taking a photo of a paint application, users are
provided with a series of drawing tools on their mobile display.
The user can spread these controls across multiple devices
(Figure 8c) so that they can access these controls without
taking up room on the main display.

This application is heavily inspired by prior research in cross-
device interactions [16]. However, our system builds on this
work by allowing devices to share interfaces without having
to install the same software or pair in advance. This lets users
utilize any nearby device as an extended control surface, while
simultaneously making these types of interactions easy to
develop and deploy.

Application #4: Campus Map
Our last application uses Snap-To-It to interact with a non-
computational object (i.e., a campus map). When users pho-
tograph the map (Figure 8d), the RSP provides them with a
digital version. They can then search for points of interest
without having to remain near the physical object.

Note that the sign was not instrumented in any way. Instead,
we simply gave the RSP a photo of the sign, and linked it
to our institution’s online map. In doing so, we show how
Snap-To-It could one day be used to help users extract deep
knowledge directly from their environment.

Experimental Evaluation
To evaluate Snap-To-It, we performed three small studies.
The first compares Snap-To-It to SIFT, and shows how our
system’s use of multiple contexts helps it identify appliances
with higher accuracy. The second compares Snap-To-It to QR
codes, and shows how our system supports a wider range of
angles and ranges. The third was conducted after a two-month
live deployment, and shows how our system can continue to
accurately identify appliances after an extended period of time.

Snap-To-It vs. SIFT Photo Recognition Accuracy
For the first study, we took eleven pictures of every printer
(13), copy machine (3), and fax machine (2) in our institution’s
building (18 appliances total). The first five photos served as
reference images, and were taken from the front and sides. The
following six images served as our test set, and were taken by
two experimenters on different days. The test images were
taken from multiple angles from separate phones, and were

Figure 8. Example Snap-To-It applications. By taking a picture (top), our system can support a wide range of interactions (bottom).

Table 1. Comparison of Snap-To-It and SIFT’s photo recognition accu-
racy. Percentages show the number of times the correct appliance (out
of 18) appeared in a list of the top 1, 3 and 5 matches.

not filtered to remove blurry images. For our evaluation, we
created 18 RSPs (1 for each appliance), and provided each
with 1, 3, or 5 reference photographs. We then had the RSPs
evaluate each photo using both our system and pure SIFT.

As expected, Snap-To-It’s ability to recognize an appliance
depends on the quality and variety of its reference photos
(Table 1). When we only provided a single reference image
(taken from the front), there was an 82% chance that the correct
appliance appeared at the top of the list and an 89% chance
it was in the top five. With three and five reference photos,
however, the chance of the correct appliance appearing at the
top increased to 87% and 89%, respectively. The chance of
the device appearing in the top five then exceeded 95%.

There are two important takeaways from this study. First,
it shows that our system does not need a large number of
reference images. Table 1 shows that our system’s accuracy
starts to level off with three reference images. This means that
on-site administrators and/or developers only have to provide
RSPs with a handful of images to obtain good performance.

Second, these results show how our system outperforms stan-
dard image recognition in a real-world setting. Of the 18
printers, six were the same make/model and ten were either
located next to each other (and hence appear in each oth-
ers’ photographs) or placed in similar looking office rooms.
While these similarities confused SIFT (especially in situations
when the photo contains only a small amount of background
scenery), Snap-To-It was able to more accurately differentiate
between appliances that looked the same but faced different
directions. Moreover, while SIFT came closer to Snap-To-It’s
accuracy with more reference photos, the results also reveal
that our system is more likely to have the correct appliance at
the top of the list. This makes our system more user-friendly

in an opportunistic setting, and lets users be more confident
that the appliance at the top of the list is the correct one.

Snap-To-It vs. QR-Code-Based Device Selection
Our second study compared device selection using Snap-To-It
and QR codes. We placed 3 and 8-inch tall QR codes on the
front and sides of a printer used in the previous study. We
then tried to scan the code with a popular mobile app [4] from
a variety of angles, starting from the front of the appliance
and moving around at 20 degree increments from distances of
three and six feet. At each location, we tried three times to
see if the app could recognize any of the codes visible on the
appliance within five seconds (the amount of time it typically
takes Snap-To-It to identify the appliance). We then used
Snap-To-It three times from the same location to see how it
would perform (using three reference photos).

The results (Figure 9) show that QR codes are sensitive to both
angle and distance. When the user was directly in front of the
QR code, the app had no trouble scanning it. However, when
the user looked at the code from an angle (40-60 degrees), the
app was often unable to scan it reliably. Even after placing the
code on multiple sides, there were some angles where none of
the codes could be successfully scanned. Additionally, while a
3-inch code was sufficient when the user was one meter away,
an 8-inch code was required for the app to recognize it from
two meters. This may be acceptable for larger appliances such
as the printer we used, but it is likely too big for smaller or
narrower devices (e.g., projectors). Snap-To-It was able to
identify the printer from all of the locations at both distances.
While the system’s confidence varied depending on the angle
(with the best results when angle and distance were closest to
the three supplied reference images), the printer was always
the top match from the 18 possible appliances. Our system’s
ability to collect and process reference photos from additional
angles lets it become even more accurate, and suggests that
Snap-To-It can be more reliable than using multiple QR codes.

Long Term Feasibility
While our first two studies show that Snap-To-It is accurate, we
were also interested in seeing how well our system performs
over time. To evaluate this, we deployed 24 RSPs in our
environment for common appliances such as printers (18),

Figure 9. QR code scanning accuracy for a single appliance from multi-
ple angles (codes placed on the front and sides).

Figure 10. Sample from our long term feasibility study. Despite notice-
able differences (circled), our system still identified the correct appliance
using two month old reference photos (SIFT matches shown as lines).

computer displays (2), and digital projectors (4). We then
published the Snap-To-It app in the Google Play store, and
placed advertisements throughout our building letting users
know that the app was available. During that time, a total of
nine different users interacted with one or more appliances,
and provided our RSPs with 25 new photographs (using the
updating logic described earlier).

After running Snap-To-It for 59 days, we asked 16 new par-
ticipants to interact with an appliance using our system. Our
participants consisted of first-year Ph.D. students and visitors,
as both groups were new to our environment and not affiliated
with our work. For this study, we emailed them a document or
a PowerPoint presentation, and asked them to use Snap-To-It
to either print or project them on an appliance that they have
never used before, respectively. We then observed them as
they performed the task on their phones.

Even though nine participants interacted with appliances with
two-month old reference photographs, our system was still
able to identify the correct appliance in all 16 cases (Figure
10). Additionally, in all but one case, the correct appliance was
at the top of the list; in the other case, the correct appliance
was second. While additional studies are needed to verify that
Snap-To-It works over longer stretches of time, these results
show that it works despite small but frequent changes to an
environment (e.g., papers placed on a printer). This suggests
that our system is robust enough to be used outside of the lab.

DISCUSSION
In this section, we highlight three important aspects of our
system: usability, responsiveness, and hardware requirements.

Usability
There are two factors that affect Snap-To-It’s usability:

Which Appliances are Compatible? One challenge with de-
ploying a system like Snap-To-It is letting users know which
appliances are selectable. This is a well-known problem for
Ubicomp systems [9]. Although icons/markers can help, tag-
ging every hardware/software appliance goes against the sim-
plicity our system offers. At the same time, however, we know
that users will stop using a system if it does not work con-
sistently [13]. Consequently, it is important to provide some
guidance so that users never feel like they are guessing.

We expect that users’ uncertainty with Snap-To-It will de-
crease as more appliances become compatible. To expedite
this process, however, we used multiple strategies. First, we
posted a series of advertisements throughout our institution
to let users know when they are entering/leaving a Snap-To-It
enabled area. In addition, we are also experimenting with
letting the user know when they are in Bluetooth range of a
Snap-To-It compatible appliance, either by displaying a notifi-
cation on the user’s mobile device, or by allowing appliances
to display an icon and/or beep. No approach works for all
appliances. Collectively, however, they reduce the chances of
users taking a photo when no services are available.

Security. Although Snap-To-It provides basic mechanisms
for user authentication, it assumes that the appliances in an
environment are trustworthy. This creates two security con-
cerns. If a malicious RSP states that it strongly matches every
user photograph, it can prevent users from connecting to other
appliances. Additionally, since Snap-To-It uses JavaScript
for its interfaces, rogue developers can potentially use it to
execute malicious code on a user’s device.

While concerning, it is important to remember that establishing
trust is an issue in every networked system. One way to
overcome this is to use blacklists to block rogue RSPs. A
more robust solution, however is to mandate the use of digital
certificates. The infrastructure to support this already exists,
and would allow our mobile app to ignore advertisements from
an RSP that has not been vetted by a trusted authority.

Responsiveness
On average, Snap-To-It takes 4 seconds to find an appliance
from a photograph. This includes the time needed for our app
to upload an image (1360ms) and for the RSP (running on
a Macbook) to download it (1043ms), calculate its features
(780ms), and compare it against one or more reference images
(267ms each). Once the app has connected, an additional
delay is required to download the interface. This delay varies
depending on internet connectivity and complexity of the UI,
but ranged between 1-3 seconds in our tests.

Although 5-7 seconds may seem long, the participants in our
final study found it to be fast compared to the time it takes for a
user to pair with an appliance or install a driver/app. This time
could be reduced even further by including the photograph in
the request message, as opposed to using URLs. Furthermore,
we have also improved the responsiveness of our mobile app
so that it displays results as they arrive, rather than forcing
users to wait for all RSPs to respond. This, combined with our
system’s sub-100ms latency for sending/receiving commands,
makes Snap-To-It fast enough for many interactive use cases.

Hardware Requirements
Snap-To-It’s architecture assumes that each appliance runs
its own RSP. However, many appliances currently lack the
computational power to analyze photos on their own. This is
especially the case when it comes to calculating SIFT features,
as the process can take upwards of 28 seconds per image on
low-powered hardware (e.g., a Raspberry Pi).

Fortunately, Snap-To-It can take advantage of existing infras-
tructure to give users the impression that they are directly
interacting with an appliance. All of the RSPs described in
this paper were hosted on laptop/desktop computers; servers
can provide similar functionality. Additionally, our approach
does not require appliances to process images on their own.
In our ongoing work, we have modified the mobile app so
that it calculates the SIFT features of its photos via a web
service prior to sending a request. This approach increases the
time needed for the app to upload a photo (from 1360ms to
3564ms), making it slightly slower for RSPs that can already
calculate SIFT features quickly. However, this strategy only
requires low-powered RSPs to compare SIFT features (which
takes 2.4s per image on a Raspberry Pi), thereby making our
goal of running RSPs on appliances technically feasible.

RELATED WORK
The idea of using mobile devices to control appliances has
been explored often in previous work. In [19], Hodes et al.
developed an architecture that rendered arbitrary controls on
a handheld device. Their system let users control appliances
from a PDA, but required them to connect to a well known
server and select devices from a list/map. This made the sys-
tem cumbersome when the user was new to the environment,
or when the list contained dozens of appliances.

Since then, researchers have developed numerous techniques
to let users specify which appliance(s) they want to use (or
“address” [9]). Prior work has experimented with laser pointers
[8, 29, 31], handheld projectors [33], RFID tags [32], and head
mounted wearables [12] to allow users to physically point, tap,
or stare at the devices they want to select. While accurate,
these techniques rely heavily on non-standard hardware (e.g.,
transmitters/receivers), making them difficult to deploy outside
of the lab. Other systems use mounted cameras [10, 15] and
magnetometers [36, 35] in order to determine where a user is
and what appliance(s) he/she is pointing at. These systems
prevent every appliance from having to be instrumented, but
only work in preinstrumented areas. Finally, researchers have
explored using smartphone cameras to select objects, either by
affixing fiducial markers to each appliance [26, 18, 20], or by
utilizing image recognition [11, 21] or machine learning [24].

While Snap-To-It also relies on visual recognition, our ap-
proach differs in three ways. First, our system does not require
the user’s device to have a priori knowledge of an image pro-
cessing server, as is required by systems such as [26, 18, 20].
Instead, it uses multicasting to share images, which lets it
discover and connect to appliances in any network-connected
environment. Secondly, our approach does not limit users to
appliances that they already own (as was done in [11]), require
the user’s device to know which devices are selectable before-
hand [24], or require the user to keep the appliance in view in

order to use it (as is the case with augmented reality systems).
This lets us support a wider range of opportunistic interac-
tions through a single system. Finally, while other systems
rely entirely on images to identify appliances, Snap-To-It also
takes the user’s location and device orientation into considera-
tion. This allows our system to more accurately differentiate
between similar looking appliances, thereby improving our
system’s ability to be used in real-world environments.

In addition to selection techniques, researchers have also
looked into the types of interactions that are possible using
a mobile device. While much work still focuses on remote
control functionality (e.g., rendering control interfaces [27],
supporting multiple interaction modalities [28], sending re-
mote commands [34]), there is now increasing interest in other
types of interactions. Pick and Drag and Drop, for example,
supports cross-device interactions by allowing users to “grab”
a file from one machine and move it to another. The Digi-
fieds system, on the other hand, uses smartphones to modify
public displays, allowing users to easily post a quick note or
reposition content [6]. Deep Shot lets devices easily transfer
program tasks between one another, thus allowing users to
start a task on one device and finish it on another [11]. In
the Open Project, researchers allowed users to project their
phone’s screen on unused public displays, thereby allowing
them to share content with friends or strangers. Finally, prod-
ucts such as AllJoyn [2], Bonjour/ZeroConf [1], and Universal
Plug and Play [3] are not designed for a single interaction, but
instead provide a general solution to allow appliances to com-
municate with each other without prior coordination. However,
these systems still require users to know a device’s name or
capabilities before they can (manually) select them.

Snap-To-It contributes to this body of work by helping us
better understand the types of interactions users want to have,
and how we can support them through a single system. We
do not claim that our system is feature complete. It does,
however, support a wide range of use cases, and its ability
to be deployed in real-world environments provides a solid
foundation for future research.

CONCLUSION
This paper has presented Snap-To-It, a system that allows users
to select and control nearby appliances using their mobile de-
vice’s camera. Our work takes an important step towards
increasing a user’s ability to interact with new and unfamiliar
appliances. Yet while Snap-To-It’s interaction technique al-
ready works with many appliances, it can be improved further.
One idea is to use Snap-To-It to interact with multiple appli-
ances at the same time. For example, it would be interesting
to allow users to connect to multiple appliances (e.g., all of
the lamps in a room) by photographing them all at once. Ad-
ditionally, while our system already uses background scenery
and compass orientation to differentiate between objects that
look the same, it would be interesting to incorporate additional
types of context (e.g., barometric pressure to estimate eleva-
tion) into the recognition pipeline to further increase accuracy.

ACKNOWLEDGMENTS
This work is supported by the Software Engineering Institute,
Carnegie Mellon University.

REFERENCES
1. 2014. Bonjour. (2014).
https://www.apple.com/support/bonjour/.

2. 2014. A Common Language for the Internet of
Everything - AllJoyn. (2014). https://www.alljoyn.org/.

3. 2014. UPnP Forum. (2014). http://www.upnp.org/.

4. 2015. Barcode Scanner. (2015).
https://play.google.com/store/apps/details?id=com.

google.zxing.client.android&hl=en.

5. 2015. QRcode.com. (2015).
http://www.qrcode.com/en/index.html.

6. Florian Alt, Alireza Sahami Shirazi, Thomas Kubitza,
and Albrecht Schmidt. 2013. Interaction techniques for
creating and exchanging content with public displays. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems - CHI ’13. ACM Press,
New York, New York, USA, 1709. DOI:
http://dx.doi.org/10.1145/2470654.2466226

7. Debasis Bandyopadhyay and Jaydip Sen. 2011. Internet
of Things: Applications and Challenges in Technology
and Standardization. Wireless Personal Communications
58, 1 (April 2011), 49–69. DOI:
http://dx.doi.org/10.1007/s11277-011-0288-5

8. Michael Beigl. 1999. Point & click-interaction in smart
environments. In Handheld and Ubiquitous Computing.
Springer, 311–313. DOI:
http://dx.doi.org/10.1007/3-540-48157-5_31

9. Victoria Bellotti, Maribeth Back, W Keith Edwards,
Rebecca E Grinter, Austin Henderson, and Cristina
Lopes. 2002. Making Sense of Sensing Systems: Five
Questions for Designers and Researchers. 1 (2002),
415–422. DOI:http://dx.doi.org/10.1145/503376.503450

10. Matthias Budde, Matthias Berning, Christopher
Baumgärtner, Florian Kinn, Timo Kopf, Sven Ochs,
Frederik Reiche, Till Riedel, and Michael Beigl. 2013.
Point & control–interaction in smart environments: you
only click twice. In Proceedings of the 2013 ACM
conference on Pervasive and ubiquitous computing
adjunct publication. ACM, 303–306. DOI:
http://dx.doi.org/10.1145/2494091.2494184

11. Tsung-Hsiang Chang and Yang Li. Deep shot: a
framework for migrating tasks across devices using
mobile phone cameras. In CHI ’11. New York, New York,
USA, 2163–2172. DOI:
http://dx.doi.org/10.1145/1978942.1979257

12. Yu-Hsiang Chen, Ben Zhang, Claire Tuna, Yang Li,
Edward A Lee, and Bjï£¡rn Hartmann. 2013. A Context
Menu for the Real World: Controlling Physical
Appliances Through Head-Worn Infrared Targeting.
Technical Report UCB/EECS-2013-200. EECS
Department, University of California, Berkeley. DOI:
http://dx.doi.org/No.UCB/EECS-2013-182

13. Fred D Davis. 1985. A technology acceptance model for
empirically testing new end-user information systems :
theory and results. Ph.D. Dissertation.
http://dspace.mit.edu/handle/1721.1/15192

14. James R. Eagan, Michel Beaudouin-Lafon, and Wendy E.
Mackay. 2011. Cracking the Cocoa Nut: User Interface
Programming at Runtime. In Proceedings of the 24th
Annual ACM Symposium on User Interface Software and
Technology (UIST ’11). ACM, New York, NY, USA,
225–234. DOI:
http://dx.doi.org/10.1145/2047196.2047226

15. David Fleer and Christian Leichsenring. 2012. MISO: a
context-sensitive multimodal interface for smart objects
based on hand gestures and finger snaps. In UIST Adjunct
Proceedings ’12. New York, New York, USA, 93–94.
DOI:http://dx.doi.org/10.1145/2380296.2380338

16. Peter Hamilton and Daniel J. Wigdor. 2014. Conductor.
In CHI ’14. New York, New York, USA, 2773–2782.
DOI:http://dx.doi.org/10.1145/2556288.2557170

17. Jonathon S Hare, Sina Samangooei, and David P
Dupplaw. 2011. OpenIMAJ and ImageTerrier: Java
libraries and tools for scalable multimedia analysis and
indexing of images. In MM ’11. New York, NY, USA,
691–694. DOI:
http://dx.doi.org/10.1145/2072298.2072421

18. Valentin Heun, Shunichi Kasahara, and Pattie Maes.
2013. Smarter Objects: Using AR Technology to
Program Physical Objects and Their Interactions. In CHI

’13 Extended Abstracts on Human Factors in Computing
Systems (CHI EA ’13). ACM, New York, NY, USA,
961–966. DOI:
http://dx.doi.org/10.1145/2468356.2468528

19. Todd D. Hodes, Randy H. Katz, Edouard
Servan-Schreiber, and Lawrence Rowe. 1997.
Composable ad-hoc mobile services for universal
interaction. In MobiCom ’97. New York, New York, USA,
1–12. DOI:http://dx.doi.org/10.1145/262116.262121

20. Can Liu, Stephane Huot, Jonathan Diehl, Wendy Mackay,
and Michel Beaudouin-Lafon. 2012. Evaluating the
Benefits of Real-time Feedback in Mobile Augmented
Reality with Hand-held Devices. In Proceedings of the
SIGCHI Conference on Human Factors in Computing
Systems (CHI ’12). ACM, New York, NY, USA,
2973–2976. DOI:
http://dx.doi.org/10.1145/2207676.2208706

21. Qiong Liu, Paul McEvoy, Don Kimber, Patrick Chiu, and
Hanning Zhou. 2006. On Redirecting Documents with a
Mobile Camera. In Workshop on Multimedia Signal
Processing. 467–470. DOI:
http://dx.doi.org/10.1109/MMSP.2006.285352

22. D.G. Lowe. 1999. Object recognition from local
scale-invariant features. In International Conference on
Computer Vision, Vol. 2. 1150–1157. DOI:
http://dx.doi.org/10.1109/ICCV.1999.790410

https://www.apple.com/support/bonjour/
https://www.alljoyn.org/
http://www.upnp.org/
https://play.google.com/store/apps/details?id=com.google.zxing.client.android&hl=en
https://play.google.com/store/apps/details?id=com.google.zxing.client.android&hl=en
http://www.qrcode.com/en/index.html
http://dx.doi.org/10.1145/2470654.2466226
http://dx.doi.org/10.1007/s11277-011-0288-5
http://dx.doi.org/10.1007/3-540-48157-5_31
http://dx.doi.org/10.1145/503376.503450
http://dx.doi.org/10.1145/2494091.2494184
http://dx.doi.org/10.1145/1978942.1979257
http://dx.doi.org/No. UCB/EECS-2013-182
http://dspace.mit.edu/handle/1721.1/15192
http://dx.doi.org/10.1145/2047196.2047226
http://dx.doi.org/10.1145/2380296.2380338
http://dx.doi.org/10.1145/2556288.2557170
http://dx.doi.org/10.1145/2072298.2072421
http://dx.doi.org/10.1145/2468356.2468528
http://dx.doi.org/10.1145/262116.262121
http://dx.doi.org/10.1145/2207676.2208706
http://dx.doi.org/10.1109/MMSP.2006.285352
http://dx.doi.org/10.1109/ICCV.1999.790410

23. Friedemann Mattern and Christian Floerkemeier. 2010.
From the Internet of Computers to the Internet of Things.
From Active Data Management to Event-Based Systems
and More (Jan. 2010), 242–259.
http://dl.acm.org/citation.cfm?id=1985625.1985645

24. Simon Mayer, Markus Schalch, Marian George, and
Gábor Sörös. 2013. Device recognition for intuitive
interaction with the web of things. In UbiComp ’13
Adjunct Proceedings. New York, New York, USA,
239–242. DOI:
http://dx.doi.org/10.1145/2494091.2494168

25. Daniele Miorandi, Sabrina Sicari, Francesco De
Pellegrini, and Imrich Chlamtac. 2012. Internet of things:
Vision, applications and research challenges. Ad Hoc
Networks 10, 7 (Sept. 2012), 1497–1516. DOI:
http://dx.doi.org/10.1016/j.adhoc.2012.02.016

26. Matei Negulescu and Yang Li. 2013. Open project: a
lightweight framework for remote sharing of mobile
applications. In UIST ’13. New York, New York, USA,
281–290. DOI:
http://dx.doi.org/10.1145/2501988.2502030

27. Jeffrey Nichols, Brad A. Myers, Michael Higgins, Joseph
Hughes, Thomas K. Harris, Roni Rosenfeld, and
Mathilde Pignol. 2002. Generating remote control
interfaces for complex appliances. In UIST ’02. New
York, New York, USA, 161–170. DOI:
http://dx.doi.org/10.1145/571985.572008

28. Jeffrey Nichols, Brad A. Myers, and Brandon Rothrock.
2006. UNIFORM: automatically generating consistent
remote control user interfaces. In CHI ’06. New York,
New York, USA, 611–620. DOI:
http://dx.doi.org/10.1145/1124772.1124865

29. Shwetak N Patel and Gregory D Abowd. In UbiComp ’03.
Springer, 200–207. DOI:
http://dx.doi.org/10.1007/978-3-540-39653-6_16

30. Jukka Riekki, Ivan Sanchez, and Mikko Pyykkönen.
2008. Universal Remote Control for the Smart World. In
Ubiquitous Intelligence and Computing (Lecture Notes in
Computer Science), Frode Eika Sandnes, Yan Zhang,
Chunming Rong, Laurence T. Yang, and Jianhua Ma
(Eds.), Vol. 5061. Berlin, Heidelberg, 563–577. DOI:
http://dx.doi.org/10.1007/978-3-540-69293-5

31. Matthias Ringwald. 2002. UbiControl: Providing New
and Easy Ways to Interact with Various Consumer
Devices. In UbiComp ’02. 81,82.

32. Ichiro Satoh. 2011. A Management Framework for
Context-Aware Multimedia Services.. In DMS. 165–170.

33. Dominik Schmidt, David Molyneaux, and Xiang Cao.
2012. PICOntrol: using a handheld projector for direct
control of physical devices through visible light. In UIST

’12. ACM Press, New York, New York, USA, 379–388.
DOI:http://dx.doi.org/10.1145/2380116.2380166

34. Chuong Cong Vo. 2013. A Framework for a
Task-Oriented User Interaction with Smart Environments

Using Mobile Devices. Ph.D. Dissertation. La Trobe
University.

35. Hanno Wirtz, Jan Rüth, Martin Serror, Jó Ágila Bitsch
Link, and Klaus Wehrle. 2014. Opportunistic interaction
in the challenged internet of things. Proceedings of the
9th ACM MobiCom workshop on Challenged networks -
CHANTS ’14 (2014), 7–12. DOI:
http://dx.doi.org/10.1145/2645672.2645679

36. Jiahui Wu, Gang Pan, Daqing Zhang, Shijian Li, and
Zhaohui Wu. 2010. MagicPhone: pointing & interacting.
In UbiComp ’10. New York, New York, USA, 451–452.
DOI:http://dx.doi.org/10.1145/1864431.1864483

http://dl.acm.org/citation.cfm?id=1985625.1985645
http://dx.doi.org/10.1145/2494091.2494168
http://dx.doi.org/10.1016/j.adhoc.2012.02.016
http://dx.doi.org/10.1145/2501988.2502030
http://dx.doi.org/10.1145/571985.572008
http://dx.doi.org/10.1145/1124772.1124865
http://dx.doi.org/10.1007/978-3-540-39653-6_16
http://dx.doi.org/10.1007/978-3-540-69293-5
http://dx.doi.org/10.1145/2380116.2380166
http://dx.doi.org/10.1145/2645672.2645679
http://dx.doi.org/10.1145/1864431.1864483

	Introduction
	Technology Probes and Derived Requirements
	Probe 1: Selecting an Appliance from the Environment
	Probe 2: Types of Interactions
	Use Case Categories

	Functional Requirements

	System Design
	Selecting an Appliance via the Mobile App
	Recognizing an Appliance
	Updating/Maintaining Reference Photos
	Defining User Interfaces
	Sharing Preferences
	Identifying Users
	Creating a New RSP

	Validation
	Example Applications
	Application #1: Game Controller
	Application #2: Digital Projector
	Application #3: Paint App
	Application #4: Campus Map

	Experimental Evaluation
	Snap-To-It vs. SIFT Photo Recognition Accuracy
	Snap-To-It vs. QR-Code-Based Device Selection
	Long Term Feasibility

	Discussion
	Usability
	Responsiveness
	Hardware Requirements

	Related Work
	Conclusion
	Acknowledgments
	REFERENCES

